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The bending of a three-layer beam with stiff outer layers is studied. The middle layer (spacer) has small 

stiffness compared with the outer layers and can be regarded as an elastic Winkler-Zimmerman 

support. By assumption, the lower (stiffeat) isotropic layer behaves as a Bernoulli-Euler beam if a load 

is applied. The boundary conditions at the ends of the beam can be arbitrary, in general. The case when 

the ends of the lower beam are fixed is considered. A uniformly distributed compressing load acts on 

the outer surface of the upper transversely isotropic layer. The ends of this layer are free of any loads. 

The plane state of stress of the transversely isotropic layer is determined by the equations of elasticity 

theory. The exact solution of the problem is obtained in terms of trigonometric series. 

IN THE general approach to the analysis of multi-layer constructions with soft and stiff layers 
[l, 21, the stiff layers are usually modelled using the Kirchhoff-Love hypothesis. As for the soft 
layers, it is assumed, for example, that all the components of the displacement vector are linear 
functions across the layer. 

We shall solve the problem in terms of dimensionless coordinates x and y relative to the half- 
thickness I of the beam. The x-axis is parallel to the beam, while the y-axis is perpendicular to 
the transversely isotropic layer. The surfaces x = +l represent the ends of the beam, the contact 
and outer lateral surfaces of the transversely isotropic layer being given by y = 0 and y = h, 
respectively. 

The equations of equilibrium and consistency for the strains have the form 

at3 aa, x+- 30, h 
ax a~ = 0, ax 

+L=o, $+p% 
?Y axay (1) 

We will write the relations between the stresses and strains E,, E, and X’E, in the form 

Elsx = CT, -kv’o,, E,E~ = ko, - kv’ox, E& = ya, (2) 

k=EJE,, y=E,IG 

The y-axis is the axis of symmetry of the material, E, and E, are the moduli of elasticity in 
the x and y directions, G is the shear modulus, and v’ is Poisson’s ratio. 

The differential equation for the curved axis of the lower beam has the form 

(3) 
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The transverse deformation of the spacer can be described by the equation 

WW4 xl - WOW = b&x), RW = ~~(0, xl (4) 

where W(y, x) and W,,(x) are dimensionless deflections (relative to !) of the transversely iso- 
tropic layer and the lower beam. 

To compute h, one can use the relation 

where E, and E,,, are the moduli of elasticity and s,, and s,,, are the thicknesses of the beam 
and the spacer, respectively. 

In (3) and (4) the normal stress R(x) is, of course, assumed to be constant across the spacer. 
We will write the boundary conditions on the lateral surfaces y = 0 (the contact surface) and 

y = h (the outer surface) of the transversely isotropic layer as well as the ends of x = &l of the 
layer 

,,=o:a,=R(x), Y=h:(Iy=-Q (5) 
YZO, y=h: a,=0 

x=fl: ja,dy=O, juxydy=O, ja,dy=O 
0 0 0 

In a more rigid form, the latter condition is o, - - 0. The undefined constant C in (3) can be 
found from the support conditions for the Be~oulli-Euler beam 

x=&l: d’N&x=O,Wo=O. (7) 

The general integral of the third equation in (1) has the form 

where Q(x) and F(x) are undefined functions. 
It follows from (3) and (4) (taking into account that (W): = (&& -(e&) that 

We require that the first condition in (6) be satisfied for every x (thus Q(x) is also defined). 
This being the case, if a&O, x) = 0, then the condition o,(h, n) = 0 is satisfied automatica~y. 
If the equilibrium equations and the condition crJ0, x) are taken into account, the second 

boundary condition in (5) takes the form 

(10) 
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(IL, and L, are operators acting on the y coordinate). 
The contact stress a&O, X) = R(x) can be determined from Eq. (lo), the exact solution of 

which can be found in terms of trigonometric series. To this end one must use the solutions of 
(1) in terms of Fourier series satisfying only the boundary conditions (5) on the lateral surfaces 
y=O and y=h of the layer. 

We will assume that 

f?(x)= 5 a,cosmu, R”(X)= f b,cosnnx 
“4 IF0 

(11) 

We observe that, due to the symmetry of the problem, the third condition in (6) implies that 

j,, Rx =-q. 
0 

Hence we find that 

a0 = -Q 

Given the boundary conditions (6) on the surfaces y = 0 and y = h and relations (11) and 
(12), the solution of system (1) has the form (it4 being an undefined constant) 

0, = 5 a,Y,(y)cosxnx +a0 
II=1 

*, = - 2 a,X,(y)sinm.x 
II=1 

CT, = -ait, a,Z,(y)cosmx + Wy - h) 

Y,(Y) = ;I ch(al,,y) + C2 Nal,,,y) + C3 ch(a2,,,y) + Cd sh(a2,ny) 

X,(Y)= KIWI sh(al.,y)+G ch(al,,y)l+K2[C3sh(a2,ny)+Cqch(a2,,y)l 

Z,(~)=~~~C1~h(a1,,y)+C2sh(a~.,,y)l+~~[C3~h(a~.n~)+~4sh(a~,~y)l 

~+=Ij$Irf(p2-4~)HIlK, al,,=mq, a2,n=mc2, p>2& 

The undefined constants C,, . . . , C, can be found from the system of equations 

(13) 

Y”(O) = 1, X”(0) = 0, Y”(h) = 0, X,(h) = 0 

for each n (n s 1) 
The stresses o, and u, can be uniquely defined from the boundary conditions (5) at the 

surfaces y = 0 and y = h. We also note that condition (12) means that CJ&, fl) = 0. 
The stress a, is written down apart from the term M(2y - h), where 

I 

Id u y=o 
0 

for any X. 
The function (a,); is uniquely defined by the boundary conditions (a,)Z. = 0 for y = 0 and 

Y =h, (cJ,): =0 for y=h, and (by)::= R”(x) for y = 0, and the system of equations (1) (the 
equations must be differentiated twice with respect to n) 

(q):: = 2 b,Y,(y)cos~+f+,(6h-3(y3/3-y2A/2)+1) (14) 
II=1 
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As a result, we obtain 

f&a,);) = 5 lib, cosxw + l;bo 
II=1 

L-2 (oy ) = 5 1,2un cos 7mx + l&z, 
II=1 

LL ((q K) = ii, tb,, ~0s mu + l;,obo 

(15) 

where the constants lt, Ii, (n a l), l,l, Co, and 1;. o 
-h’/4!, and c,=-h426/(7x5!). 

are known. In particular, g = hZ /lo, 1: ,, = 

In (10) we represent L,((a,))L and &(a,) by the Fourier series (15). Then the general 
solution of (10) has the form 

R(x)= D,ch~xcos~x+Dzsh~xsin/3x+ 

(16) 

where B = [w/(~A)]“~. 
We consider the series 

c u,(x)* u,(x)=f~b,[il(~)4+w]-1coslnur 
n=O 

We assume that the original series 

5 lib,, cos mx 
n=O 

converges. Then the series Z;_& and I;;_+: formed by the derivatives are uniformly 
convergent. It follows that the series under consideration can be differentiated twice term-by- 
term [3]. This is also the case for the second series in formula (16). 

We have 

-j.tf l~b,(m)2[h(m)4+o]-~cosnnx+ 
n=l 

(17) 

+T z l;a,(7tn)2[h(nn)4 +6)1-l cos7cnx+~~((o,)~) 
n 1 

The desired coefficients a, and b,, can be determined from the system of equations (16), (17) 

a, = DY$,, + DY%., v b, = W4.n + 0294 9 tl>l 

ao = DA.0 + D&,0 - 4 10, bo = 44,o + DzB2.o (18) 

where A,,, B,,, (n a 1) is the solution of the system for D1 = 1 and D, = 0. Similarly, A,, B, I 

is the solution for Q = 0 and Dz = 1. 
The undefined constants D1 and Dz can be found from Eq. (12), and the second boundary 

condition in (6), where cr, is given by (8). In particular, the last equation from which to deter- 
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mine 4 and 4 has the form 

(& and L4 are operators acting on the y coordinate). 
In the case when the ends of the Bernoulli-EuIer beam are fixed the constant C in (9) can be 

computed from the formuk 

Thus, by computing a,, and b,,, one can determine o, and oXu from (13). The stress CT, is 
written apart from a constant moment. 

We shall determine the constant M from the condition 

We obtain 

Note that, in general, the stresses can be represented in two ways. For example, a, can be 
computed either from (13) and (19) or from (g), taking the first relation in (13) and formula 
(14) into account. By comparing these two solutions, one can estimate the number N of terms 
that must be retained in the Fourier series. 

Once the strains in the anisotropic layer are determined, one can find the displacements if 
the boundary condition W, = 0 is taken into account for x = +l. 

In Table 1 we list the stresses at certain characteristic points of the anisotropic layer for h = so = 0.01, 
JL = 4.5, k = 4, E, lE, = 0.5, and A, = 40. The stresses are given relative to the parameter q The stress cc, 
was computed from (13) and (19), and a,* was computed from (8). By comparing these two solutions, 
one can estimate the number of terms that must be kept in the Fourier series. In the given example 
N=4OR. 

4.6cs 0 0.348 0.350 
-0.680 0.299 -0,016 -0.015 
-0,598 0.321 -0,068 +X6 
-0,032 0,430 -0.220 -0.219 
-0.744 0,476 -0,297 -0,296 
-10.20 0.051 -0.418 -0.417 
-15,82 -0.73 1 -0.367 -KS6 
-3,722 -1.443 -0.175 -0.174 

58.66 0 0.004 0.002 
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The numerical results obtained reveal that very substantial tensile stresses cr, may arise at the ends 
x = fl of the layer as the compliance coefficient h, decreases (cf. Table 1). The shear stresses near the 
free surface x=fl are also large. Thus, when computing the strength of a multi-layer construction 
consisting of stiff (anisotropic) and soft layers, it is advisable to determine the shear and normal stresses 
in the stiff layers. 

The axial stresses cr, vary linearly across the thickness of the beam. This provides a qualitative 
confirmation of the applicability of the fundamental assumptions of the theory of thin shells, for example, 

the Kirchhoff-Love hypothesis. 
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