THE STATE OF STRESS OF AN ELASTICALLY SUPPORTED TRANSVERSELY ISOTROPIC BEAM \dagger

I. V. Panferov
Moscow

(Received 26 June 1992)

Abstract

The bending of a three-layer beam with stiff outer layers is studied. The middle layer (spacer) has small stiffness compared with the outer layers and can be regarded as an elastic Winkler-Zimmerman support. By assumption, the lower (stiffest) isotropic layer behaves as a Bernoulli-Euler beam if a load is applied. The boundary conditions at the ends of the beam can be arbitrary, in general. The case when the ends of the lower beam are fixed is considered. A uniformly distributed compressing load acts on the outer surface of the upper transversely isotropic layer. The ends of this layer are free of any loads. The plane state of stress of the transversely isotropic layer is determined by the equations of elasticity theory. The exact solution of the problem is obtained in terms of trigonometric series.

In the general approach to the analysis of multi-layer constructions with soft and stiff layers [1, 2], the stiff layers are usually modelled using the Kirchhoff-Love hypothesis. As for the soft layers, it is assumed, for example, that all the components of the displacement vector are linear functions across the layer.

We shall solve the problem in terms of dimensionless coordinates x and y relative to the halfthickness l of the beam. The x-axis is parallel to the beam, while the y-axis is perpendicular to the transversely isotropic layer. The surfaces $x= \pm 1$ represent the ends of the beam, the contact and outer lateral surfaces of the transversely isotropic layer being given by $y=0$ and $y=h$, respectively.
The equations of equilibrium and consistency for the strains have the form

$$
\begin{equation*}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}=0, \quad \frac{\partial \sigma_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}=0, \quad \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \varepsilon_{x y}}{\partial x \partial y} \tag{1}
\end{equation*}
$$

We will write the relations between the stresses and strains $\varepsilon_{x}, \varepsilon_{y}$ and $1 / 2 \varepsilon_{x y}$ in the form

$$
\begin{align*}
& E_{x} \varepsilon_{x}=\sigma_{x}-k v^{\prime} \sigma_{y}, \quad E_{x} \varepsilon_{y}=k \sigma_{y}-k v^{\prime} \sigma_{x}, \quad E_{x} \varepsilon_{x y}=\gamma \sigma_{x y} \tag{2}\\
& k=E_{x} / E_{y}, \quad \gamma=E_{x} / G
\end{align*}
$$

The y-axis is the axis of symmetry of the material, E_{x} and E_{y} are the moduli of elasticity in the x and y directions, G is the shear modulus, and v^{\prime} is Poisson's ratio.

The differential equation for the curved axis of the lower beam has the form

$$
\begin{equation*}
\frac{d^{2} W_{0}}{d x^{2}}=\frac{12}{E_{0} s_{0}^{3}}\left(\int_{0}^{x} \int_{0}^{\eta} R(\xi) d \xi d \eta-C\right) \tag{3}
\end{equation*}
$$

The transverse deformation of the spacer can be described by the equation

$$
\begin{equation*}
E_{x}\left(W(0, x)-W_{0}(x)\right)=\lambda_{0} R(x), \quad R(x)=\sigma_{y}(0, x) \tag{4}
\end{equation*}
$$

where $\mathrm{W}(y, x)$ and $\mathrm{W}_{0}(x)$ are dimensionless deflections (relative to l) of the transversely isotropic layer and the lower beam.

To compute λ_{0} one can use the relation

$$
\lambda_{0}=E_{x} s_{m} / E_{m}, \quad E_{m} \ll E_{x}
$$

where E_{0} and E_{m} are the moduli of elasticity and s_{0} and s_{m} are the thicknesses of the beam and the spacer, respectively.

In (3) and (4) the normal stress $R(x)$ is, of course, assumed to be constant across the spacer.
We will write the boundary conditions on the lateral surfaces $y=0$ (the contact surface) and $y=h$ (the outer surface) of the transversely isotropic layer as well as the ends of $x= \pm 1$ of the layer

$$
\begin{gather*}
y=0: \sigma_{y}=R(x), \quad y=h: \sigma_{y}=-q \tag{5}\\
y=0, y=h: \sigma_{x y}=0 \\
x= \pm 1: \int_{0}^{h} \sigma_{x} d y=0, \quad \int_{0}^{h} \sigma_{x} y d y=0, \quad \int_{0}^{h} \sigma_{x y} d y=0 \tag{6}
\end{gather*}
$$

In a more rigid form, the latter condition is $\sigma_{x y}=0$. The undefined constant C in (3) can be found from the support conditions for the Bernoulli-Euler beam

$$
\begin{equation*}
x= \pm 1: d W_{0} / d x=0, W_{0}=0 . \tag{7}
\end{equation*}
$$

The general integral of the third equation in (1) has the form

$$
\begin{align*}
& \sigma_{x}=\Phi(x)+F(x) y-\mu \sigma_{y}-k \int_{00}^{y \eta}\left(\sigma_{y}\right)_{x x}^{\prime \prime} d \xi d \eta \tag{8}\\
& \mu=\gamma-2 k \nu^{\prime},\left(\sigma_{y}\right)_{x x}^{\prime \prime}=\partial^{2} \sigma_{y} / \partial x^{2}
\end{align*}
$$

where $\Phi(x)$ and $F(x)$ are undefined functions.
It follows from (3) and (4) (taking into account that (W) $\left.)_{x x}^{\prime \prime} \equiv\left(\varepsilon_{x y}\right)_{x}^{\prime}-\left(\varepsilon_{x}\right)_{y}^{\prime}\right)$ that

$$
\begin{equation*}
\lambda_{0} R^{\prime \prime}=-F-\left(\int_{00}^{x \eta} R d \xi d \eta-C\right) 12 E_{x} /\left(E_{0} s_{0}^{3}\right) \tag{9}
\end{equation*}
$$

We require that the first condition in (6) be satisfied for every x (thus $\Phi(x)$ is also defined).
This being the case, if $\sigma_{x y}(0, x)=0$, then the condition $\sigma_{x y}(h, x)=0$ is satisfied automatically.
If the equilibrium equations and the condition $\sigma_{x y}(0, x)$ are taken into account, the second boundary condition in (5) takes the form

$$
\begin{align*}
& \lambda R^{(4)}+\omega R=\mu L_{1}\left(\left(\sigma_{y}\right)_{x x}^{\prime \prime}\right)+(k / \lambda) L_{2}\left(\lambda\left(\sigma_{y}\right)_{x x u x}^{\prime \prime \prime \prime}+\omega \sigma_{y}\right)-(k \omega / \lambda) L_{2}\left(\sigma_{y}\right)-q \tag{10}\\
& \lambda=\lambda_{0} h^{3} / 12, \quad \omega=1+E_{x} h^{3} /\left(E_{0} s_{0}^{3}\right) \\
& L_{1}(\cdot)=\int_{00}^{h y}(\cdot) d \xi d y-\frac{h^{h}}{2} \int_{0}^{h}(\cdot) d y \\
& L_{2}(\cdot)=\int_{0000}^{h y\}} \int_{j}^{\eta}(\cdot) d \rho d \eta d \xi d y-\frac{h^{h y}}{2} \iint_{000}^{\xi}(\cdot) d \eta d \xi d y
\end{align*}
$$

(L_{1} and L_{2} are operators acting on the y coordinate).
The contact stress $\sigma_{y}(0, x)=R(x)$ can be determined from Eq. (10), the exact solution of which can be found in terms of trigonometric series. To this end one must use the solutions of (1) in terms of Fourier series satisfying only the boundary conditions (5) on the lateral surfaces $y=0$ and $y=h$ of the layer.
We will assume that

$$
\begin{equation*}
R(x)=\sum_{n=0}^{\infty} a_{n} \cos \pi n x, \quad R^{\prime \prime}(x)=\sum_{n=0}^{\infty} b_{n} \cos \pi n x \tag{11}
\end{equation*}
$$

We observe that, due to the symmetry of the problem, the third condition in (6) implies that

$$
\int_{0}^{1} R(x) d x=-q
$$

Hence we find that

$$
\begin{equation*}
a_{0}=-q \tag{12}
\end{equation*}
$$

Given the boundary conditions (6) on the surfaces $y=0$ and $y=h$ and relations (11) and (12), the solution of system (1) has the form (M being an undefined constant)

$$
\begin{align*}
& \sigma_{y}=\sum_{n=1}^{\infty} a_{n} Y_{n}(y) \cos \pi n x+a_{0} \\
& \sigma_{x y}=-\sum_{n=1}^{\infty} a_{n} X_{n}(y) \sin \pi n x \tag{13}\\
& \sigma_{x}=-\sum_{n=1}^{\infty} a_{n} Z_{n}(y) \cos \pi n x+M(2 y-h) \\
& Y_{n}(y)=C_{1} \operatorname{ch}\left(\alpha_{1, n} y\right)+C_{2} \operatorname{sh}\left(\alpha_{1, n} y\right)+C_{3} \operatorname{ch}\left(\alpha_{2, n} y\right)+C_{4} \operatorname{sh}\left(\alpha_{2, n} y\right) \\
& X_{n}(y)=\kappa_{1}\left[C_{1} \operatorname{sh}\left(\alpha_{1, n} y\right)+C_{2} \operatorname{ch}\left(\alpha_{1, n} y\right)\right]+\kappa_{2}\left[C_{3} \operatorname{sh}\left(\alpha_{2, n} y\right)+C_{4} \operatorname{ch}\left(\alpha_{2, n} y\right)\right] \\
& Z_{n}(y)=\kappa_{1}^{2}\left[C_{1} \operatorname{ch}\left(\alpha_{1, n} y\right)+C_{2} \operatorname{sh}\left(\alpha_{1, n} y\right)\right]+\kappa_{2}^{2}\left[C_{3} \operatorname{ch}\left(\alpha_{2, n} y\right)+C_{4} \operatorname{sh}\left(\alpha_{2, n} y\right)\right] \\
& \kappa_{\frac{1}{2}}=11 / 2\left[\mu \pm\left(\mu^{2}-4 k\right)^{1 / 2}\right] 1 / 2, \quad \alpha_{1, n}=\pi n \kappa_{1}, \quad \alpha_{2, n}=\pi n \kappa_{2}, \quad \mu>2 \sqrt{k}
\end{align*}
$$

The undefined constants C_{1}, \ldots, C_{4} can be found from the system of equations

$$
Y_{n}(0)=1, \quad X_{n}(0)=0, \quad Y_{n}(h)=0, \quad X_{n}(h)=0
$$

for each $n(n \geqslant 1)$
The stresses σ_{y} and $\sigma_{x y}$ can be uniquely defined from the boundary conditions (5) at the surfaces $y=0$ and $y=h$. We also note that condition (12) means that $\sigma_{x y}(y, \pm 1)=0$.
The stress σ_{x} is written down apart from the term $M(2 y-h)$, where

$$
\int_{0}^{n} \sigma_{x} d y=0
$$

for any x.
The function $\left(\sigma_{y}\right)_{x x}^{\prime \prime}$ is uniquely defined by the boundary conditions $\left(\sigma_{x y}\right)_{x x}^{\prime \prime}=0$ for $y=0$ and $y=h,\left(\sigma_{y}\right)_{x x}^{\prime \prime}=0$ for $y=h$, and $\left(\sigma_{y}\right)_{x x}^{\prime \prime}=R^{\prime \prime}(x)$ for $y=0$, and the system of equations (1) (the equations must be differentiated twice with respect to x)

$$
\begin{equation*}
\left(\sigma_{y}\right)_{x x}^{\prime \prime}=\sum_{n=1}^{\infty} b_{n} Y_{n}(y) \cos \pi n x+b_{0}\left\{6 h^{-3}\left(y^{3} / 3-y^{2} h / 2\right)+1\right\} \tag{14}
\end{equation*}
$$

As a result, we obtain

$$
\begin{align*}
& L_{1}\left(\left(\sigma_{y}\right)_{x x}^{\prime \prime}\right)=\sum_{n=1}^{\infty} l_{n}^{1} b_{n} \cos \pi n x+l_{0}^{1} b_{0} \\
& L_{2}\left(\sigma_{y}\right)=\sum_{n=1}^{\infty} l_{n}^{2} a_{n} \cos \pi n x+l_{0,0}^{2} a_{0} \tag{15}\\
& L_{2}\left(\left(\sigma_{y}\right)_{x x}^{\prime \prime}\right)=\sum_{n=1}^{\infty} l_{n}^{2} b_{n} \cos \pi n x+l_{2,0}^{2} b_{0}
\end{align*}
$$

where the constants $l_{n}^{1}, l_{n}^{2},(n \geqslant 1), l_{0}^{1}, l_{0,0}^{2}$, and $l_{2,0}^{2}$ are known. In particular, $l_{0}^{1}=h^{2} / 10, l_{0,0}^{2}=$ $-h^{4} / 4!$, and $l_{2,0}^{2}=-h^{4} 26 /(7 \times 5!)$.
In (10) we represent $L_{1}\left(\left(\sigma_{y}\right)\right)_{x x}^{\prime \prime \prime}$ and $L_{2}\left(\sigma_{y}\right)$ by the Fourier series (15). Then the general solution of (10) has the form

$$
\begin{align*}
& R(x)=D_{1} \operatorname{ch} \beta x \cos \beta x+D_{2} \operatorname{sh} \beta x \sin \beta x+ \\
& +\mu\left\{\sum_{n=1}^{\infty} l_{n}^{1} b_{n}\left[\lambda(\pi n)^{4}+\omega\right]^{-1} \cos \pi n x+l_{0} \frac{b_{0}}{\omega}\right\}- \tag{16}\\
& -\frac{k \omega}{\lambda}\left\{\sum_{n=1}^{\infty} l_{n}^{2} a_{n}\left[\lambda(\pi n)^{4}+\omega\right]^{-1} \cos \pi n x+l_{0,0}^{2} \frac{a_{0}}{\omega}\right\}+\frac{k}{\lambda} L_{2}\left(\sigma_{y}\right)-\frac{q}{\omega}
\end{align*}
$$

where $\beta=[\omega /(4 \lambda)]^{1 / 4}$.
We consider the series

$$
\sum_{n=0}^{\infty} u_{n}(x), \quad u_{n}(x)=l_{n}^{1} b_{n}\left[\lambda(\pi n)^{4}+\omega\right]^{-1} \cos \pi n x
$$

We assume that the original series

$$
\sum_{n=0}^{\infty} l_{n}^{1} b_{n} \cos \pi n x
$$

converges. Then the series $\Sigma_{n=0}^{n} u_{n}^{\prime}$ and $\Sigma_{n=0}^{-} u_{n}^{\prime \prime}$ formed by the derivatives are uniformly convergent. It follows that the series under consideration can be differentiated twice term-byterm [3]. This is also the case for the second series in formula (16).

We have

$$
\begin{align*}
& R^{\prime \prime}=-2 \beta^{2} \operatorname{sh} \beta x \sin \beta x D_{1}+2 \beta^{2} \operatorname{ch} \beta x \cos \beta x D_{2}- \\
& -\mu \sum_{n=1}^{\infty} l_{n}^{\prime} b_{n}(\pi n)^{2}\left[\lambda(\pi n)^{4}+\omega\right]^{-:} \cos \pi n x+ \tag{17}\\
& +\frac{k \omega}{\lambda} \sum_{n=1}^{\infty} l_{n}^{2} a_{n}(\pi n)^{2}\left[\lambda(\pi n)^{4}+\omega\right]^{-1} \cos \pi n x+\frac{k}{\lambda} L_{2}\left(\left(\sigma_{y}\right)_{x x}^{\prime \prime}\right)
\end{align*}
$$

The desired coefficients a_{n} and b_{n} can be determined from the system of equations (16), (17)

$$
\begin{align*}
& a_{n}=D_{1} A_{1, n}+D_{2} A_{2, n}, \quad b_{n}=D_{1} B_{1, n}+D_{2} B_{2, n}, \quad n \geqslant 1 \\
& a_{0}=D_{1} A_{1,0}+D_{2} A_{2,0}-q / \omega, \quad b_{0}=D_{1} B_{1,0}+D_{2} B_{2,0} \tag{18}
\end{align*}
$$

where $A_{1, n}, B_{1, n}(n \geqslant 1)$ is the solution of the system for $D_{1}=1$ and $D_{2}=0$. Similarly, $A_{2, n}, B_{2, n}$ is the solution for $D_{1}=0$ and $D_{2}=1$.

The undefined constants D_{1} and D_{2} can be found from Eq. (12), and the second boundary condition in (6), where σ_{x} is given by (8). In particular, the last equation from which to deter-
mine D_{1} and D_{2} has the form

$$
\begin{aligned}
& F(1) h^{3} / 12-\mu L_{3}\left(\sigma_{y}\right)-k L_{4}\left(\left(\sigma_{y}\right)_{x x}^{\prime \prime}\right)=0 \\
& L_{3}(\cdot)=\int_{0}^{h} y(\cdot) d y-1 / 2 h \int_{0}^{h}(\cdot) d y \\
& L_{4}(\cdot)=\int_{0}^{h} y \int_{00}^{y} \int_{0}^{\eta}(\cdot) d \xi d \eta d y-1 / 2 h \int_{000}^{h y} \int_{0}^{\eta}(\cdot) d \xi d \eta d y
\end{aligned}
$$

(L_{3} and L_{4} are operators acting on the y coordinate).
In the case when the ends of the Bernoulli-Euler beam are fixed the constant C in (9) can be computed from the formula

$$
C=\int_{0}^{1} \int_{0}^{x \xi} R d \eta d \xi d x .
$$

Thus, by computing a_{n} and b_{n}, one can determine σ_{y} and $\sigma_{x y}$ from (13). The stress σ_{x} is written apart from a constant moment.
We shall determine the constant M from the condition

$$
\int_{0}^{h} \sigma_{x} y d y=0
$$

We obtain

$$
\begin{equation*}
M=6 h^{-3} \sum_{n=1}^{\infty} a_{n} \int_{0}^{h} Z_{n}(y) y d y \cos \pi n \tag{19}
\end{equation*}
$$

Note that, in general, the stresses can be represented in two ways. For example, σ_{x} can be computed either from (13) and (19) or from (8), taking the first relation in (13) and formula (14) into account. By comparing these two solutions, one can estimate the number N of terms that must be retained in the Fourier series.

Once the strains in the anisotropic layer are determined, one can find the displacements if the boundary condition $W_{0}=0$ is taken into account for $x= \pm 1$.

In Table 1 we list the stresses at certain characteristic points of the anisotropic layer for $h=s_{0}=0.01$, $\mu=4.5, k=4, E_{x} / E_{0}=0.5$, and $\lambda_{0}=40$. The stresses are given relative to the parameter q The stress σ_{x} was computed from (13) and (19), and σ_{x}^{*} was computed from (8). By comparing these two solutions, one can estimate the number of terms that must be kept in the Fourier series. In the given example $N=400$.

Table 1

x	$\sigma_{y}(0, x)$	$\sigma_{x y}(1 / 2 h, x) \times 10^{-2}$	$\sigma_{x}(0, x) \times 10^{-4}$	$\sigma_{x}^{*}(0, x) \times 10^{-4}$
0	$-0,605$	0	0,348	0.350
$58 / 96$	-0.680	0.299	-0.016	-0.015
$62 / 96$	$-0,598$	0,321	-0.068	$-0,066$
$72 / 96$	-0.032	0.430	-0.220	-0.219
$76 / 96$	-0.744	0,476	$-0,297$	$-0,296$
$84 / 96$	$-10,20$	0.051	-0.418	-0.417
$88 / 96$	$-15,82$	-0.731	-0.367	-0.366
$92 / 96$	-3.722	-1.443	-0.175	-0.174
1	58,66	0	0.004	0.002

The numerical results obtained reveal that very substantial tensile stresses σ_{y} may arise at the ends $x= \pm 1$ of the layer as the compliance coefficient λ_{0} decreases (cf. Table 1). The shear stresses near the free surface $x= \pm 1$ are also large. Thus, when computing the strength of a multi-layer construction consisting of stiff (anisotropic) and soft layers, it is advisable to determine the shear and normal stresses in the stiff layers.

The axial stresses σ_{x} vary linearly across the thickness of the beam. This provides a qualitative confirmation of the applicability of the fundamental assumptions of the theory of thin shells, for example, the Kirchhoff-Love hypothesis.

REFERENCES

1. BOLOTIN V. V. and NOVICHKOV Yu. N., Mechanics of Multi-layer Constructions. Mashinostroyeniye, Moscow, 1980.
2. GRIGOLYUK E. I. and KOGAN F. A., The present-date state of the theory of multi-layer shells. Prikl. Mekh. 8, 6, 3-17, 1972.
3. VOROB'YEV N. N., The Theory of Series. Nauka, Moscow, 1979.
